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Abstract. The nuclear reaction dynamics leading to the formation of recently discovered resonance in the
mutual-0+

2 channel of the 12C+12C inelastic scattering around Ec.m. ' 32 MeV is studied in terms of the
dynamic polarization potential (DPP) induced by the channel coupling among various excited states in 12C.
The microscopic 3α cluster-model wave functions are used to generate the 12C–12C diagonal and coupling
potentials in the double-folding model. It is found that DPP for the 0+

2 +0+
2 channel is an unusually strong

attractive potential which even exceeds the zeroth-order folding-model potential of this channel around
the nuclear surface region and that the strong coupling between the 0+

2 and 2+
2 states is predominantly

responsible for the unusual DPP in this channel. The effective potential, the sum of the original folding-
model potential and the attractive DPP, is found to generates resonance states in the same energy region
as that of the resonance states generated by the original folding-model potential but the former states are
found to be higher-nodal states having four additional radial nodes. Similar but more moderate property
of DPP is also found in the entrance (elastic) channel. These results suggest that the reaction dynamics
of generating the resonance in the 12C(0+

2 )+12C(0+
2 ) channel may rather differ from that of the simple

crossing of the zeroth-order molecular band generated by the potentials in the entrance and exit channels
suggested by the standard band-crossing model.

PACS. 21.60.Gx Cluster models – 24.10.Eq Coupled-channel and distorted-wave models – 25.70.Ev Res-
onances – 27.30.+t 20 ≤ A ≤ 38

1 Introduction

A broad resonance discovered recently [1,2] in the
12C+12C inelastic scattering at Ec.m. = 32.5 MeV leading
to the 12C(0+

2 )+12C(0+
2 ) channel attracted considerable

interest. Because the 0+
2 state of 12C nucleus was known

to be a well-developed 3α cluster state [3]–[9], it was ini-
tially claimed [1,2] that a 6α linear-chain state was dis-
covered.1 The existence of a 6α linear-chain state or simi-
lar elongated prolate-shape states in 24Mg were predicted
by some theoretical models [10–14] at excitation energies
around 15–20 MeV above the 6-α breakup threshold which
corresponded to Ec.m.=30∼35 MeV of the 12C+12C sys-
tem.

However, more recent experiments [15–21] have raised
a serious problem upon the 6α linear-chain interpretation.
In the experiments, resonance peaks have been observed
also in other exit channels such as 12C(0+

2 )+12C(3−1 ),
12C(3−1 )+12C(3−1 ) and 8Begs+16Ogs channels, which have
no affinity with the elongated prolate-shape states. These

1 It should be noted that the 0+
2 state itself is not necessarily

the 3α linear chain state [7–9].

resonance peaks are well correlated in energy with the res-
onance observed in the 12C(0+

2 )+12C(0+
2 ) channel. Since

the elongated prolate-shape states hardly decay through
these channels, it would be difficult to identify the 32.5
MeV resonance in the 12C(0+

2 )+12C(0+
2 ) channel with the

6α-chain or similar kinds of states.
An alternative interpretation based on the band cross-

ing model [22,23] (BCM) was proposed by Hirabayashi,
Sakuragi and Abe [24] to explain the resonance in the
12C(0+

2 )+12C(0+
2 ) channel. They performed a coupled-

channels (CC) calculation using microscopic form factors
based on the microscopic 3α-cluster model [9] for 12C
and successfully reproduced the excitation function as
well as characteristic angular distributions in this chan-
nel [24]. The calculation also reproduced the well-known
resonance [25,26] at Ec.m.=29 MeV in the 12Cgs+12C(0+

2 )
channel. In addition, the same calculation also predicted
more resonances in other inelastic channels, such as the
12C(0+

2 )+12C(3−1 ) and 12C(0+
2 ) +12C(0+

3 ) ones, which
have been discovered in a recent experiment [15] by British
group at the right position. These results support the va-
lidity of the microscopic CC approach to the resonance of
these multi-cluster exit channels.
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The results of the CC calculation were interpreted in
terms of BCM as the formation of dinuclear resonances
having weakly coupled 3α+3α and 3α+12Cgs configu-
rations at Ec.m.=32.5 MeV and 29 MeV, respectively.
Namely, the resonances are expected to appear around the
energies where the elastic (12Cgs+12Cgs) molecular band
crosses with the excited bands with the above configu-
rations. In the original BCM, the appearance of promi-
nent resonances is explained solely based on crossing of
the molecular rotational bands due to the intrinsic spins
of excited nuclei, whose stretched coupling to the orbital
angular momentum gives rise to an effective increase of
moment of inertia of the molecular band [22]. One might
think that no such crossing mechanism applies to cases
of excitations with intrinsic spin zero, as in the present
case of the 12C(0+

2 ) state. This is true if the moment of
inertia of the excited molecular band is the same as that
of the elastic one. However, we know that the 0+

2 state
is of a spatially extended 3α structure and, therefore, the
interactions between 12C nuclei with one or both in the
0+

2 state are of longer range than that between the ground
state nuclei [27,24]. Thus, the moment of inertia of the ex-
cited molecular bands are expected to be larger than that
of the elastic one. This makes it possible that the molec-
ular bands in the 12Cgs+12C(0+

2 ) and 12C(0+
2 )+12C(0+

2 )
channels cross with the elastic band, as in the cases with
normal nonzero-spin channels [27,24].

The resonance energies obtained in the practical CC
calculations by Hirabayashi et al. [24] are lower by about
5 MeV than the crossing energies of the molecular bands
generated by the folding potential in each channel and
it was attributed to the channel-coupling effects among
various channels included in the CC calculation. We know
that the coupling among the three channels, 12Cgs+12Cgs,
12Cgs+12C(0+

2 ) and 12C(0+
2 )+12C(0+

2 ), are rather weak re-
flecting the large difference of the intrisic nuclear structure
between the ground state and the 0+

2 state and it might
be reasonable to attribute the 5 MeV shift of the reso-
nance energies to the coupling effects. However, the CC
calculation also included the coupling to other excited
states, such as the 2+

1 , 3−1 and 2+
2 states. Since the 2+

1

and 2+
2 states are known to have similar nuclear struc-

ture to those of the ground state and the 0+
2 state, re-

spectively, the rather strong coupling to these states can
also affect the resonance energies through the dynamic
polarization effects on the potentials in the entrance chan-
nel, 12Cgs+12Cgs, and the exit ones, 12Cgs+12C(0+

2 ) and
12C(0+

2 )+12C(0+
2 ), in which the resonances are observed.

The questions to be asked here are how large the channel-
coupling effects are and how they affect the inter-nucleus
potentials in the entrance and exit channels of interest
here. In this paper, we analyze the channel-coupling effects
in terms of the so-called dynamic polarization potentials
[28] (DPP) and investigate the nature of the resonances
generated by the CC calculation in connection with the
relevant reaction mechanism of this system.

In the next section, we describe the microscopic
coupled-channels formalism. In Sect. 3, we calculate DPP
of the elastic channel and the 12C(0+

2 )+12C(0+
2 ) one for

grazing partial waves and discuss the nature of the reso-
nance wave functions generated by the effective potential
with the channel-coupling effect included, namely the sum
of the original folding potential and DPP. We also discuss
the possible appearance of the effective rotational bands
of higher-nodal nature due to the effect of channel cou-
pling. The last section will be devoted to summary and
discussion.

2 Microscopic coupled-channel formalism

The theoretical framework and the model space adopted
in the present analysis are the same as those used in the
previous work [24] but we describe them in more detail in
order to define the dynamic-polarization potential (DPP)
and to discuss the nature of the coupling potentials ex-
plicitly.

The real part of the diagonal and coupling potentials
for the 12C+12C system is calculated by the double-folding
model [29,33], which is expressed symbolically as

Vik,jl(R) =
∫
ρij(r1)ρkl(r2)

× vNN(E, ρ; r1 +R− r2)dr1dr2. (2.1)

A more explicit form of the potentials including the
angular-momentum algebra will be given below. In the
above equation, ρij(r) represents the diagonal (i=j) or
transition (i 6= j) density of 12C. In the present CC cal-
culations, we include the ground state (0+

1 ) and the five
excited states; the 2+

1 , 0+
2 , 3+

1 states at excitation energies
of 4.44 MeV, 7.65 MeV, 9.64 MeV, respectively and the 2+

2

and 0+
3 states. The latter two states have not clearly been

identified experimentally, while they are well established
theoretically to be well-developed 3α cluster states having
similar nuclear structures as that of the famous 0+

2 state.
We have assigned the excitation energies of 10.3 MeV and
14.04 MeV to the 2+

2 and 0+
3 states, respectively; the for-

mer is the energy of the spin-unknown broad resonance
while the latter is a theoretical value taken from [9]. All the
diagonal and transition densities among these six states
were given by the resonating-group-method (RGM) cal-
culation [9] by Kamimura based on the 3α-cluster model.
These densities well reproduce available experimental data
for electromagnetic properties of 12C.

In (2.1), vNN represents the nucleon-nucleon (NN)
interaction which acts between nucleons belonging to
the different nuclei. We adopt the DDM3Y (density-
dependent Michigan 3-range Yukawa) interaction [30,31]
defined by

vNN(E, ρ; s) = g(E, s)f(E, ρ),

f(E, ρ) = C(E)
[
1 + α(E)e−β(E)ρ

]
. (2.2)

Here, g(E, s) is the spin and isospin scalar (S=T=0) com-
ponent of the original M3Y interaction [32]. It contains a
weakly energy-dependent knock-on exchange term having
a zero-range form factor [29]. The density dependence of
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vNN is represented by the factor f(E, ρ) and the parameter
values of C(E), α(E) and β(E) are given in [30] as func-
tions of the energy per nucleon E. In the present analysis,
we adopt the values evaluated at E=5 MeV, which cor-
responds to Ec.m.=30 MeV for the 12C+12C system, and
ignore the weak energy dependence over the energy range
of interest here. Following the prescription of [30], the den-
sity ρ in (2.2) is evaluated by the sum of the densities of
the colliding nuclei as ρ = ρ1(r1) + ρ2(r2), where ρ1(r1)
(ρ2(r2)) represents the nucleon density of nucleus 1 (nu-
cleus 2) at the position r1 (r2) with respect to the c.m.
of the nucleus. The inclusion of the density dependence
is very important, especially for describing large differ-
ence of interactions between 12C nuclei in various states
having very different nuclear structure; for example the
large difference between the interaction for the 12C nuclei
both in the spatially compact ground state and that for
the 12C nuclei both in the spatially extended 0+

2 state.
In the case of the coupling potential Vik,jl (i 6= j and/or
k 6= l) defined in (2.1), the nucleons feel different density-
environments before and after the transition between dif-
ferent states and, hence, we replace the above ρ1(r1) and
ρ2(r2) with the average densities 1

2{ρii(r1)+ρjj(r1)} and
1
2{ρkk(r2) + ρll(r2)}, respectively.

The coupling potential for the Coulomb excitation is
also given by the folding model by replacing the nuclear
interaction vNN with the Coulomb one in (2.1). However,
we have found that the inclusion of the Coulomb coupling
is not essential in the discussion about DPP, we neglect
the Coulomb coupling in the present paper to save the
computational time.

In practical CC calculations, the coupled-channels
equations for each total angular momentum of the sys-
tem, J ,[
− ~

2

2µ
d2

dR2
+
~2L(L+ 1)

2µR2
+ Ṽ

(J)
αL,αL(R)− Eα

]
χ

(J)
αL(R)

= −
∑

(β,L′)6=(α,L)

V
(J)
αL,βL′(R)χ(J)

βL′(R) (2.3)

are solved numerically. Here, α or β denotes the “chan-
nel” designated by the intrinsic spins of the two 12C nu-
clei, I1 and I2, the channel spin I (I=I1+I2), and the
sum of the excitation energies of two 12C nuclei, εα. Thus,
Eα ≡ E − εα is the energy of the 12C–12C relative mo-
tion in the channel α, while χ(J)

αL(R) represents the radial
wave function of the relative motion in the “sub-channel”
specified by α, J and L (L being the orbital angular mo-
mentum). The diagonal or coupling potential, V (J)

αL,βL′(R),
between the sub-channels (α, J , L) and (β, J , L′) is given
by the double-folding model as mentioned before and its
explicit form reads

V
(J)
αL,βL′(R) = V

(J)
I1I2IL,I′1I

′
2I
′L′(R)

=
〈
Φ

(JM)
I1I2IL

(ξ1, ξ2, R̂)
∣∣ ∑
i∈C1
j∈C2

vNN(xij)

×
∣∣Φ(JM)
I′1I
′
2I
′L′(ξ1, ξ2, R̂)

〉
ξ1,ξ2,R̂

, (2.4)

where

Φ
(JM)
I1I2IL

(ξ1, ξ2, R̂)

=

√
1

2(1 + δI1I2δi1i2)

×S12

[[
ψ

(i1)
I1

(ξ1)⊗ ψ(i2)
I2

(ξ2)
]
I
⊗ iLYL(R̂)

]
JM

=

√
1

2(1 + δI1I2δi1i2)

×
{ [[

ψ
(i1)
I1

(ξ1)⊗ ψ(i2)
I2

(ξ2)
]
I
⊗ iLYL(R̂)

]
JM

+
[[
ψ

(i1)
I1

(ξ2)⊗ ψ(i2)
I2

(ξ1)
]
I
⊗ (−1)LiLYL(R̂)

]
JM

}
(2.5)

is the channel wave function, which is symmetrized [23]
with respect to the exchange of identical 12C nuclei by
the symmetrization operator S12. Here, ψ(i1)

I1
denotes the

internal wave function of 12C in the i1th state having an
intrinsic spin I1: e.g. i1=2 and I1=0+ for the 0+

2 state,
which is given by the microscopic 3α RGM calcualtion [9]
as mentioned before. In (2.4), vNN (xij) represents the NN
interaction between the ith nucleon in a nucleus C1 and
the jth one in the other nucleus C2, for which we adopt
the DDM3Y interaction as already mentioned.

The channels included in the present CC calculation
are the same as those in [24], namely the elastic (0+

1 +0+
1 )

channel, the single-excitation channels in which one of the
12C nuclei is excited to either 2+

1 , 3−1 , 0+
2 , 2+

2 or 0+
3 states,

and the mutual-excitation channels in which two 12C nu-
clei are in the excited states as 2+

1 +2+
1 , 0+

2 +2+
1 , 0+

2 +0+
2 ,

0+
2 +3−1 , 0+

2 +0+
3 , 0+

2 +2+
2 and 2+

2 +2+
2 . The coupling among

all these channels are fully taken into account.
Once we fix the model space (namely the channels),

there is no free parameter in the present formalism, except
the imaginary potential which we have introduced in the
diagonal part of the interactions in order to account for
the absorption of flux to fusion and other reaction pro-
cesses. Namely, we have replaced the diagonal potential
V

(J)
αL,αL(R) defined by (2.4) with

Ṽ
(J)
αL,αL(R) ≡ V (J)

αL,αL(R) + iW (R) (2.6)

in the left-hand side of (2.3). We have used the three-
parameter Woods-Saxon form for W (R) and the parame-
ters are taken to be common to all the channels, as in the
case of the previous study [24].

In the present study, however, we have slightly mod-
ified the parameter values from those of [24]. This is be-
cause in the previous analysis there was an approximate
treatment in the symmetrization process of (2.5) in the
calculation of coupling potentials among some mutual-
excited channels, while we calculate them exactly in the
present paper. Therefore, we have slightly modified the
imaginary-potential parameters so that we obtain the



376 M. Ito et al.: Dynamic polarization potential of 12C+12C system at molecular-resonance energies

Fig. 1. Differential cross section of the 12C+12C inelastic scat-
tering to the 0+

2 +0+
2 channel at Ec.m.=32.5 MeV. The solid

curve is the result of the CC calculation. The experimental
data are taken from 1)

same quality of fits as those obtained in the previous work
[24]. In order to demonstrate the quality of fits, we show
in Fig. 1 the angular distribution of the 12C(0+

2 )+12C(0+
2 )

channel at the on-resonance energy (Ec.m.=32.5 MeV) as
a typical example. The parameter values obtained at this
energy are W0=20.0 MeV, a=0.20 fm and R=3.0 fm. In
the comparison with the fit shown in Fig. 3 of [24], one may
notice that the present calculation gives about 50% larger
cross sections at the forward angles (θ < 50◦) and gives
rise to an extra bump around θ = 50◦ but the difference
at those forward angles is not essential for the discussion
of resonance phenomena observed in the backward-angle
cross sections (θ=70–105◦). We have confirmed that the
minor modification introduced in the present paper does
not affect the essential agreement with a wide range of
experimental data attained in [24].

3 Dynamic polarization potential

The dynamic polarization potential (DPP) discussed in
the present paper is the so-called trivially-equivalent lo-
cal potential [28] (TELP) or equivalently called, wave-
function-equivalent local potential [33,34], which is defined
as

∆V
(J)
αL (R)=

∑
(β,L′)6=(α,L)

V
(J)
αL,βL′(R)χ(J)

βL′(R)/χ(J)
αL(R).(3.1)

After solving the CC equations, we have numerical val-
ues of the wave functions χ(J)

αL(R) and χ
(J)
βL′(R) of all the

channels in hands. Thus, we can directly calculate DPP
numerically. By definition, DPP of this type is “exact” in
the sense that Ṽ (J)

αL,αL(R) +∆V
(J)
αL (R) exactly reproduces

the coupled-channel solution for this channel, χ(J)
αL(R).

Namely, χ(J)
αL(R) satisfies the following “single-channel”

Fig. 2. The real part (solid) and the imaginary part (dotted) of
DPP of the elastic channel for J=18 (lower) and the modulus
of the elastic-channel wave function (upper). The long-dashed
curve shows the folding potential of this channel

Schrödinger equation equivalent to the CC equations de-
fined in (2.3);[

− ~
2

2µ
d2

dR2
+
~2L(L+ 1)

2µR2

+Ṽ (J)
αL,αL(R) +∆V

(J)
αL (R)− Eα

]
χ

(J)
αL(R) = 0. (3.2)

In (3.1), each term of the r.h.s. represents the contribu-
tion from individual channels {(β, J, L′)} to DPP of the
channel (α, J, L), which may provide useful information
for understanding the origin of DPP and the relevant reac-
tion dynamics, as will be discussed below. In the previous
study [24], it was found that the most important partial
wave around the resonance energy was J=18. Therefore,
we first discuss DPP for J=18 in some detail in the reso-
nance energy region.

3.1 DPP for the entrance channel

Figure 2 shows the real and imaginary parts of DPP
for J=18 in the entrance (elastic) channel calculated at
Ec.m.=32.5 MeV. For comparison, the diagonal (folding-
model) potential of this channel is shown by the long-
dashed curve. The modulus of the radial wave function of
this channel is also shown in the upper panel of the fig-
ure in an arbitrary unit. The irregular cusp-like shapes of
DPP around R=4 fm are due to the minimum of the wave
fucntion which appears in the denominator in (3.1), while
the large values at short distances (R ≤2 fm) stem from
the almost zero-value of the wave function. The behavior
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Fig. 3. The effective potentials for J(=L)=18 (lower) of the
elastic channel and the wave functions of the barrier-top reso-
nances (upper). The solid and dotted curves correspond to the
cases with and without the inclusion of DPP, respectively. The
holizontal bars indicate the energy positions of the resonances

of DPP at such short distances has little effect upon the
scattering of high partial waves because of the dominance
of the centrifugal potential in this radial region. There-
fore, we concentrate our attention to the behavior of DPP
around the surface region. It is seen that the real part of
DPP is predominantly attractive around the surface re-
gion having 30–50 % of the strength of the zeroth-order
folding potential. It is noticed that the strength of DPP
amounts to about 10 MeV at R=5 fm and 5 MeV at R=6
fm. The imaginary part of DPP also has a considerable
strength around the barrier region with negative sign.

In order to see the effect of the channel coupling on the
resonance formation and on the nature of the resonance
wave function more clearly, we calculate the scattering
with the real folding-model potential alone with and with-
out the real part of DPP added. Without DPP, the barrier-
top position of the effective potential (the sum of the nu-
clear, Coulomb and centrifugal potentials) for J(=L)=18
is around R=5.5 fm and its barrier height is about 33
MeV, as shown by the dotted curve in the lower half of
Fig. 3. This potential gives rise to a barrier-top resonance
at Ecm=32.5 MeV, the wave function of which is shown
by the dotted curve in the upper half of Fig. 3. It is seen
that the resonance wave function has no radial node inside
the barrier region (R ≤5.5 fm), to which we could assign a
total oscillator quantum number N ≡ 2n+L=18, where n
is the number of radial nodes. Addition of the real part of
DPP to this potential gives rise to a considerable change
of the barrier-top position and its height, as shown by
the solid curve of the same figure. This modified effective
potential generates a barrier top resonance at Ecm=27.7

Fig. 4. The same as Fig. 2 but for the 0+
2 +0+

2 channel

MeV, which is 5.4 MeV below the resonance generated
by the original potential. The wave function of this reso-
nance, however, has one radial node (n=1) inside the bar-
rier regin (R ≤6.5 fm) as shown by the solid curve, which
corresponds to a higher-nodal state with N ≡ 2n+ L=20
compared with the resonance generated by the original
potential. This implies that the original resonance with
N=18 has been pulled down more deeply by the attrac-
tion of DPP, although it is not visible in scattering due to
the extremely small width.

It should be noted that DPP itself is energy dependent
and, hence, DPP evaluated at 27.7 MeV is not precisely
identical to that evaluated at 32.5 MeV. Therefore, the
above statement that the DPP evaluated at Ecm=32.5
MeV gives rise to a resonance at Ecm=27.7 MeV may not
necessarily be consistent. However, we have confirmed that
the strongly attractive nature of DPP around and inside
the barrier region is common to all the nearby energies,
although details of the radial shape are somewhat different
depending on energy. Thus, the qualitative discussion that
the resonance state of higher-nodal nature is induced by
the channel-coupling effect remains valid.

3.2 DPP for the exit channels

Next, we calculate DPP of the 0+
2 +0+

2 channel. Here, DPP
of this channel is calculated from the solutions of the CC
equations under the boundary condition that the 0+

2 +0+
2

channel is the “entrance channel”, and the energy for the
relative motion Eα in this channel is taken to be the
Eα=Ec.m. − εα where Ec.m.=32.5 MeV and εα is the Q-
value of this channel, namely twice the excitation energy
of the 0+

2 state. The result is shown in Fig. 4. The diago-
nal (folding-model) potential of this channel is also shown
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Fig. 5. The same as Fig. 3 but for the 0+
2 +0+

2 channel. In the
ordinate, Q denotes the Q-value of this channel, which is twice
the excitation energy of the 0+

2 state

by the long-dashed curve for comparison. The strength of
DPP of this channel is surprisingly large, the real part of
which even exceeds the zeroth-order folding potential of
this channel at the surface region of interest here, as shown
by the solid curve. Again, the irregular behaviors of DPP
around R=3.5 fm, 4.7 fm, 6.0 fm and 7.7 fm are due to the
minima of the wave function of this channel which is shown
in the upper half of the figure. The attractive strength of
DPP amounts to 20–30 MeV around the grazing distances
(R ' 7 ∼ 8 fm) of this channel. It is, however, interesting
to notice that the real part changes its sign from negative
to positive around R=8.2 fm, which happened to coincide
with the barrier-top position of the effective potential gen-
erated by the original folding potential (the dotted curve
in the lower half of Fig. 5). Therefore, the addition of DPP
to the original effective potential leads to a very strange
shape of the barrier shown by the solid curve in Fig. 5.

This modified effetive potential with the real part of
DPP generates a resonance state at Ec.m.=30.4 MeV, close
to the resonance state generated at Ec.m.=32.0 MeV by
the original effective potential, as shown by the solid and
dotted bars in the lower half of Fig. 5. The wave functions
of these resonance states are shown by the solid and dotted
curves in the upper half of the figure. The wave function
generated by the original potential (the dotted curve) has
one radial node (n=1) inside the barrier and, hence, cor-
responds to the member of the molecular rotational band
with N=20. Despite the similar resonance energies, the
wave function of the new resonance state (the solid curve)
has additional four radial nodes (namely, n=5) compared
with the wave function of the original resonance, which
implies that the new resonance state corresponds to the
state with N=28. This is an ineviable consequence of the

Fig. 6. The real part (upper) and the imaginary part (lower)
of DPP of the elastic channel for J=18. The dotted curves
show the contribution from the 0+

1 +2+
1 channel

drastic increase of attraction by adding DPP, namely by
the strong channel-coupling effects.

We have also calculated DPP for the 0+
1 +0+

2 chan-
nel and found that its qualitative nature is quite similar
to that of the 0+

2 +0+
2 channel just mentioned above, al-

though we do not show them in figures. Since the essential
mechanism to generate such a characteristic property of
DPP is common to these exit channels as disucussed be-
low, we focus our attention to the 0+

2 +0+
2 channel in the

rest part of this paper.

3.3 DPP and the coupling scheme

Next, we investigate the roles of the individual channels
contributing to DPP discussed above, by looking at the
individual terms in the r.h.s. of (3.1) separately, and find
out which channels play important roles for DPP of the
elastic channel and the 0+

2 +0+
2 one, respectively. First,

we have analyzed DPP of the elastic channel and found
that the dominant contribution comes from the 0+

1 +2+
1

single-excitation channel, as shown by the dashed curves
in Fig. 6. It is seen that more than one half of the full
strength of DPP stems from the contribution of this chan-
nel, while the rest part is found to be shared by the con-
tributions from the 2+

1 +2+
1 , 0+

1 +3−1 and 0+
1 +0+

3 channels,
although the 2+

1 +2+
1 channel is the most important next

to the 0+
1 +2+

1 channel. The contribution from other chan-
nels is found to be almost negligible.

For DPP of the 0+
2 +0+

2 channel, the most important
contribution to DPP comes from the 0+

2 +2+
2 channel,
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Fig. 7. The real part (upper) and the imaginary part (lower)
of DPP of the 0+

2 +0+
2 channel for J=18. The dotted curves

show the contribution from the 0+
2 +2+

2 channel

which is shown by the dashed curves in Fig. 7 together
with the total DPP (the solid ones). The contribution of
this channel carries about 50% of the total strength of
DPP around the grazing region and the rest half is at-
tributed to the [2+

2 ⊗2+
2 ]I channels with the channel spins

I=0, 2 and 4. Among the [2+
2 ⊗ 2+

2 ]I channels, the I=4
channel is found to give the largest contribution. The con-
tributions of all other channels are found to be almost
completely negligible and invisible in the present energy
scale of Fig. 7.

In order to understand the reason why only some spe-
cific channels contribute to DPP of either the elastic chan-
nel or the 0+

2 +0+
2 one and, particularly, to understand the

extremetly large values of DPP of the latter channel, we
look into details of the transition densities and the rele-
vant coupling potentials among various channels.

A key to understand the characteristic coupling scheme
of the present 12C+12C system is the coexistence of two
groups of states having very different nuclear structures,
i.e. the shell-like states (such as the 0+

1 and 2+
1 states) and

the 3α-cluster states (such as the 0+
2 and 2+

2 states), as
mentioned before. Because of the large difference of nu-
clear structure, the transitions between the states having
different structures are weak, while the transitions among
the same group of states are strong. The large difference of
nuclear structure gives rise to the difference in shapes and
strengths of the transition densities [9] among these states
in 12C. In Fig. 8a, we compare the quadrupole (λ=2) tran-
sition densities among the 0+

1 , 2+
1 , 0+

2 and 2+
2 states, which

have been used in the present CC calculation. A large
spatial range of the 2+

2 → 0+
2 transition density reflects

the spatially-extended 3α-cluster structure of these states.
The calculated B(E2) value for this transition is about 25
times larger than that for the 2+

1 → 0+
1 transition. [9]

The large difference of the transition densities re-
flects upon the coupling potentials for the correspond-
ing transitions through the folding procedure of (2.1) or
equivalently of (2.4). Figure 8b shows the J=L′=L=18
component of the coupling potentials, V (J)

I1I2IL,I′1I
′
2I
′L′(R)

defined in (2.4), for the transition between the elastic
channel [0+

1 ⊗0+
1 ]I=0 and the [0+

1 ⊗2+
1 ]I=2 channel (the

dashed curve), that between the [0+
2 ⊗0+

2 ]I=0 channel and
the [0+

2 ⊗2+
2 ]I=2 one (the solid curve), that between the

[0+
2 ⊗0+

2 ]I=0 channel and the [0+
2 ⊗2+

1 ]I=2 one (the dot-
ted curve), and that between the [0+

1 ⊗0+
1 ]I=0 channel and

the [0+
1 ⊗2+

2 ]I=2 one (the dot-dashed curve), each of which
contains the corresponding transition density shown in
Fig. 8a. The large magnitude of the coupling potential for
the transition between the [0+

2 ⊗0+
2 ]I=0 and [0+

2 ⊗2+
2 ]I=2

channels around the surface region reflects the long-range
nature of the associated transition density between the
2+

2 and 0+
2 states, shown in Fig. 8a, and is responsible

for the huge magnitude of DPP of the 0+
2 +0+

2 channel
seen in Fig. 4. Namely, the dominant contribution of the
0+

2 +2+
2 and 2+

2 +2+
2 channels on DPP of the 0+

2 +0+
2 chan-

nel is originated from the spatially-extended 3α-cluster
structure which is common to the 0+

2 and 2+
2 states. On

the other hand, the negligible contribution to DPP of the
0+

2 +0+
2 channel from other channels, such as the 0+

1 +2+
1

and 2+
1 +2+

1 ones, is the consequence of the weak tran-
sition between the states having very different nuclear
structures. Similarly, we can understand the reason why
the dominant contribution to DPP in the elastic channel
comes from the channels in which both 12C nuclei are in
the shell-like states, such as the 0+

1 +2+
1 and 2+

1 +2+
1 ones,

and the reason why the contribution from other channels
in which one or both 12C nuclei are in the cluster-like
states is negligible.

3.4 DPP for other partial waves and molecular bands

Now, we come back to the original folding-model poten-
tials without DPP and investigate the molecular rota-
tional bands composed of the barrier-top resonances gen-
erated by these folding-model potentials in the elastic
channel as well as in the 0+

2 +0+
2 one. Figures 9a and 9b

shows the partial cross sections for the “elastic scatter-
ing” by the real folding potential in the elastic (0+

1 +0+
1 )

channel and the 0+
2 +0+

2 one, respectively, for several par-
tial waves, J(=L)=10, 12, 14, 16, 18 and 20. A sequence
of sharp resonances are generated around the barrier top
energy of each partial wave in the elastic channel, which
form a molecular band with N=2n+L=18 and, hence, ter-
minate at J=18. A sign of the appearance of N=20 band
is also seen at several MeV above the N = 18 band but
it is unclear because it lies well above the barrier-top en-
ergies and the resonance states have large widths. In the
0+

2 +0+
2 channel, there also observed are the series of sharp

resonances slightly below the barrier-top energies, which
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Fig. 8. (a) The quadrupole transition densities
between the 12C states indicated and (b) the
coupling potentials associated to the transition
density shown in (a). See text for the detai

Fig. 9. The energy dependence of the par-
tial cross sections for L=10∼20 of the single-
channel potential scattering (a) in the elastic
channel and (b) in the 0+

2 +0+
2 channel, where

the folding-model potentials of the individual
channels are used

are found to form a molecular band with N=2n+L=20
and hence terminate at J=20. In this channel, the N=22
band is also identified at about 4 MeV above the N=20
band with moderate widths. In this channel, there should
also exist the N=18 band below the N=20 band for J ≤18
but it is not visible in the scattering due to the extremely
small width. The resonance energies of these three bands
are plotted in Fig. 10a by the open circles (for the elastic
channel) and the open squares (for the 0+

2 +0+
2 channel)

as a function of J(J + 1). It is noticed that the slope of
the bands in the latter channel is smaller than that of the
elastic band, which reflects the longer interaction range
of the folding potential in the latter channel, as already
mentioned before.

In the previous sections, we have seen for the J=18
partial wave that the channel coupling effect induces the
strongly attractive DPP and that the addition of the at-
tractive DPP to the original folding potential induces the
new resonance state having the higher-nodal nature. We
have performed the similar calculation for other partial
waves (J=L=10, 12, 14 and 16) at the on-resonance en-
ergies of the above-mentioned potential resonances shown
in Fig. 9 (those with N=18 for the elastic channel and
with N=20 for the 0+

2 +0+
2 one) and we have confirmed

the similar features of DPP as those we have seen at
J=18. Namely, DPP is predominantly attractive around
the nuclear surface and the effective potential modified
with DPP for each partial wave generates the higher-nodal
resonance state near the original resonance state gener-
ated by the folding potential. We have found that the
wave function for each partial wave has n radial nodes
inside the effective barrier with n satisfying N=2n+L=20
for the elastic channel and N=2n+L=28 for the 0+

2 +0+
2

one, as in the case of J=18. This implies that these
newly generated resonance states may form a higher-
nodal molecular-rotational band having a common oscilla-
tor quantum number N , provided they line up on straight
lines in the J(J + 1) diagram.

To confirm this conjecture, we plot these new reso-
nance states in the J(J + 1) diagram in Fig. 10a by the
filled circles (for the elastic channel) and filled squares (for
the 0+

2 +0+
2 one) connected by the solid lines, together with

the original bands generated by the folding-model poten-
tial. As expected, the N=20 resonance states in the elastic
channel line up very nicely on a straight line. Similarly, the
N=28 resonance states in the 0+

2 +0+
2 channel almost line

up on a line except for the J=16 state which largely devi-
ates from the systematics of other partial waves. No addi-
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Fig. 10. (a) The rotational bands in the elastic channel and the 0+
2 +0+

2 one. The open circles (open squares) connected by
the dotted lines indicate the single-channel resonances generated by the folding-model potential of the elastic channel (0+

2 +0+
2

channel), while the filled circles (filled squares) are the resonances generated by the folding-model potential supplemented by
DPP in the respective channels. (b) The rotational bands in the elastic channel and the aligned (L=J-I) components of the
rotational bands in the single-2+

1 (dotted curve) and mutual-2+
1 (dashed curve) channels. The elastic-channel bands are the

same as those in (a). In the ordinate axis, Q denotes the Q-value of the excited channel

tional state with N=28 is found for J=16 around the ex-
pected energy of Ec.m. '29 MeV and, at present, the ori-
gin of the large deviation for the J=16 state is unknown.
Hence, the formation of the N=28 “rotational band” in
this channel is unclear but it is interesting to note that the
energies of the J=16 and 18 resonance states in this chan-
nel lie in the energy range of the resonance observed in ex-
periments (Ec.m. = 32.5±Γ/2 MeV with Γ ' 4 MeV). In
fact, the CC calculation by Hirabayashi et al. [24], which
reproduced this resonance, showed that the dominant par-
tial waves were J=18 and 16 at the on-resonance energy
Ec.m.=32.5 MeV.

It is noticed that the new band in the elastic chan-
nel has a clearly smaller slope than the original band and
these two bands cross each other between J=12 and 14.
However, this does not implies that DPP is repulsive for
the lower partial waves of J=10 and 12, because the new
band consists of the higher-nodal states with N=20 while
the original band has N=18. Therefore, DPP is still at-
tractive for all the partial waves investigated here. The
smaller slope implies that the moment of inertia of the
new band becomes larger than that of the original band
due to the increase of the barrier-top radius by the addi-
tion of the long-range attraction of DPP, which is already
seen in Fig. 3.

It is also interesting to note that the slope of the new
band in the elastic channel is close to the slope of the
aligned band (L=J−2) in the 0+

1 +2+
1 channel and even

closer to that of the aligned band in the 2+
1 +2+

1 chan-
nel with L=J−4, as shown by the dotted and dashed
curves in Fig. 10b. The similarity of the slope may have a
close relation to the fact that the dominant contribution
to the elastic-channel DPP comes from these excited chan-

nels, although the aligned bands in these excited channels
plotted here are the bands with N=18 same as the orig-
inal elastic band (open circles), rather than N=20 of the
newly-generated band (filled circles).

4 Summary and discussion

In this paper, we have investigated the effect of the channel
coupling to the 12C excited states in 12C+12C scattering in
terms of the dynamic polarization potential (DPP) and its
relation to the formation of molecular rotational bands in
the elastic channel as well as in the 0+

2 +0+
2 one. This anal-

ysis has been made by the microscopic coupled-channel
calculation with the use of the double-folding-model in-
teractions based on the realistic nucleon-nucleon effective
force and the reliable transition densities of 12C obtained
by the microscopic 3α-RGM calculation.

Because of the characteristic property of the 12C nu-
clear structure, namely the coexistence of states hav-
ing very different structure, the shell-like states and the
cluster-like states, the elastic channel is mainly affected
by the channels in which two 12C nuclei are in the shell-
like states, such as the 0+

1 +2+
1 and 2+

1 +2+
1 channels, while

the 0+
2 +0+

2 channel is mainly affected by the channels in
which two 12C are in the cluster-like states, such as the
0+

2 +2+
2 and 2+

2 +2+
2 channels. These channel coupling ef-

fects are represented in terms of DPP for several grazing
partial waves and it is found that DPP is attractive as
a whole in the nuclear surface region in both the elastic
channel and the 0+

2 +0+
2 one. In the elastic channel, the at-

tractive DPP gives rise to about 5 MeV energy gain which
generates the resonance state having an additional radial
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node in its wave function compared with the original res-
onance state generated by the original potential without
DPP added. The channel-coupling effect is particularly
strong for the 0+

2 +0+
2 channel and DPP of this channel

generated by the coupling to the 0+
2 +2+

2 and 2+
2 +2+

2 chan-
nels has an extremely strong attraction. This strong DPP
gives rise to more than 20 MeV energy gain around the
barrier region and generates the higher-nodal resonance
state having four additional radial nodes compared with
the resonance states generaged by the origial folding po-
tential. The large effect of the channel coupling among the
cluster-like channels is the consequence of the similarity
of nuclear structure between the 0+

2 and 2+
2 states and the

extended spatial range of the transition density between
the states. These qualitative features of DPP are found to
be almost independent of the incident energy and partial
waves in the present molecular-resonance region.

Such a large correction term due to the channel cou-
pling implies that the resonance state generated by the
sum of the folding potential and DPP may not be a simple
“potential resonance” to be observed only in the relevant
channel for which we calculate DPP, but a more complex
resonance state having partial decay widths to various exit
channels. In other words, the resonance state is a kind of
eigenstate having various components of the channels in-
cluded in the CC calculation. Therefore, for example, it
can be a case that some of the inelastic channels, such as
the aligned component (L=J − 4) of the 2+

1 +2+
1 channel,

could be a dominant component of the resonance state
(or eigenstate) and hence the elastic-channel component
carries only a small fraction of the probability amplitude.
In fact, it is found that this is the case of the present sys-
tem. We have examined it by a test calculation in which
the coupled-channels equations are solved by the varia-
tional calculation with the use of the L2-integrable basis
functions when all the imaginary potentials are switched-
off, namely by the diagonalization of the matrix elements
of the hermitian Hamiltonian of the present system, and
examining the admixture of various channel components
in the individual eigenstates. It is also found that the
same is true for the cluster-like eigenstates generated by
the coupling among the cluster-group of channels, where
the “elastic” (0+

2 +0+
2 ) component is found to have only a

small probability amplitude. In the present paper, we do
not discuss the details of this kind of analysis any further
and a more complete analysis will be reported elsewhere
in a forthcoming paper. We should, however, point out
that the small elastic-channel component is represented in
a different manner in the present study of DPP, namely,
by the small amplitude of the wave function due to the
imaginary part of DPP.

As we have already seen in Figs. 2 and 4, DPP has the
absorptive imaginary part with a considerable strength in
both the elastic channel and the 0+

2 +0+
2 one. The imag-

inary part of DPP represents the flux loss from the “en-
trance channel” (which corresponds to the elastic channel
in the case of Fig. 2 and to the 0+

2 +0+
2 one in the case of

Fig. 4) through the channel coupling and hence the am-
plitude of the wave function of that channel is strongly

reduced compared with the case that only the real part
of DPP is taken into account. In contrast to the imagi-
nary potential W (R) which was introduced in the diago-
nal potential (see (2.6)), the imaginary part of DPP does
not necessarily represents the genuine absorption of flux
to outside the model space of the CC calculation but it
rather represents the flux flow from the entrance channel
to various exit channels explicitly included in the CC cal-
culation. Of course, DPP also contains the real absoption
through the propagators of the inelastic channels, the de-
nominator of which contains the distorting potential with
the imaginary part W (R). However, this is the higher-
order effect of the imaginary potential in the intermediate
channels. In fact, a very weak imaginary potential which
we have adopted here for W (R) will make this kind of
higher-order effect small. Therefore, the imaginary part of
DPP mainly represents the flux flow from the “entrance
channel” to the “inelastic channels” within the CC model
space. Thus, the suppressed amplitude of the entrance-
channel wave function due to the imaginary part of DPP
has a meaning similar to the small probability amplitude
of the entrance-channel component observed in the varia-
tional approach. In any case, in order to understand the
structure of the resonance states and its relation to the
reaction dynamics, it is necessary to investigate the wave
functions of all the relevant channels as well as the partial
widths of the individual resonance states in more detail.
This kind of analysis is in progress.

The strongly attractive effect of the channel coupling,
represented by the real part of DPP, seems to lead to the
formation of the new molecular-rotational bands which
has the higher-nodal nature compared with the original
molecular-rotational bands generated by the folding po-
tential (although the formation of the rotational band is
not so clear in the 0+

2 +0+
2 channel). Such a large cor-

rection to the real potential as well as the existence of
the imaginary part of DPP with an appreciable strength
suggest that these new type of rotational bands may con-
sist of a series of resonance states (or eigenstates) having
a considerable amount of the “inelastic-channel” compo-
nents. Although in the present paper we have not yet con-
firmed the above conjecture, for example by the detailed
anlysis of the resonance wave functions, the results of the
present paper strongly suggest that the reaction dynam-
ics leading to the resonance observed in experiments in
the 0+

2 +0+
2 channel may not be so simple as to be un-

derstood by the simple band-crossing mechanism between
the original (zeroth-order) molecular bands generated by
the folding potential in each channel. It rather contains
much more complicated dynamical processes through the
strong coupling among the nearby channels having similar
nuclear structure. On the other hand, we have also seen
that the coupling between the different types of channels,
the shell-like channels and the cluster-like ones, is weak
and this fact allows us to expect that the transition be-
tween the above-mentioned new “rotational bands” (or
“eigenbands”) is also weak. This may suggest a new-type
of band-crossing-like mechanism, which holds between the
“eigenbands”, each of which is generated by the strong
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coupling among the same types of channels, rather than
the “zeroth-order bands” generated by the folding-model
potential. A more detailed analysis of this point, including
the detailed analysis of the resonance wave functions and
the partial widths, is in progress.
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